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Abstract. The microscopic many-body theory of the Nuclear Equation of State is discussed in the frame-
work of the Bethe-Brueckner-Goldstone method. The expansion is extended up to the three hole-line
diagrams contribution. Within the same scheme, the hole spectral function is calculated in nuclear matter
to assess the relevance of nucleon-nucleon short-range correlations. The calculation is carried out by using
several nucleon-nucleon realistic interactions. Results are compared with other approaches based on varia-
tional methods and transport theory. Discrepancies appear in the high-energy region, which is sensitive to
short-range correlations, and are due to the different many-body treatment more than to the specific NN
interaction used. Both nuclear matter Equation of State and spectral function appear to be dominated by
two-body correlations.

PACS. 21.65.+f Nuclear matter – 21.10.Pc Single-particle levels and strength functions

1 Introduction

At the hadron level, the main difficulty in the many-body
theory of nuclear matter is the treatment of the strong re-
pulsive core, which dominates the short-range behaviour
of the nucleon-nucleon (NN) interaction. One way of over-
coming this difficulty is to introduce the two-body scatter-
ing G-matrix, which has a much smoother behaviour even
for large repulsive core. It is possible to rearrange the per-
turbation expansion in terms of the reaction G-matrix, in
place of the original bare NN interaction, and this proce-
dure is systematically exploited in the Bethe-Brueckner-
Goldstone (BBG) expansion [1]. In this work we present
the latest results on the nuclear EOS based on BBG ex-
pansion. The same approach can be applied to the study
of the nucleon spectral function, and we will present some
results obtained recently.

2 The BBG expansion and the nuclear EOS

The BBG expansion for the ground-state energy at a given
density, i.e. the EOS at zero temperature, can be ordered
according to the number of independent hole-lines appear-
ing in the diagrams representing the different terms of the
expansion. This grouping of diagrams generates the so-
called hole-line expansion [2]. The diagrams with a given
number n of hole-lines are expected to describe the main
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contribution to the n-particle correlations in the system.
At the two hole-line level of approximation the corre-
sponding summation of the ladder diagrams produces the
Brueckner-Hartree-Fock (BHF) approximation, which in-
corporates the two-particle correlations. The BHF approx-
imation includes the self-consistent procedure of determin-
ing the single-particle auxiliary potential, which is an es-
sential ingredient of the method. Once the auxiliary self-
consistent potential is introduced, the expansion is imple-
mented by introducing the set of diagrams which include
“potential insertions”. Formally, the complete summation
of the whole diagrammatic series is independent of the
particular choice of the auxiliary potential. In practice, if
the auxiliary potential is not too exotic, once convergence
of the expansion has been reached, the results should be
stable under modifications of the single-particle potential.
We will use this property as a criterion of convergence.

The summation of the ladder diagrams can be per-
formed by solving the integral equation for the Brueckner
G-matrix

〈k1k2|G(ω)|k3k4〉 = 〈k1k2|v|k3k4〉 +
∑
k′
3k′

4

〈k1k2|v|k′
3k

′
4〉

× (1− ΘF(k′
3)) (1 − ΘF(k′

4))
ω − ek′

3
− ek′

4

×〈k′
3k

′
4|G(ω)|k3k4〉 , (1)

where ΘF(k) = 1 for k < kF and is zero otherwise,
with kF the Fermi momentum. The product Q(k, k′) =
(1−ΘF(k))(1−ΘF(k′)), appearing in the kernel of eq. (1),
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selects only scattered momenta which lie outside the Fermi
sphere, and it is commonly referred to as the “Pauli opera-
tor”. This G-matrix can be viewed as the in-medium scat-
tering matrix between two nucleons. Indeed, in the BBG
expansion the original bare NN interaction is replaced by
the G-matrix in all higher-order terms.

The effect of three-body correlations can be calculated
by considering the three hole-line diagrams. They can be
summed up by introducing a similar generalization of the
scattering matrix for three particles. The three-body scat-
tering problem for free particles has received a formal
solution by Fadeev [3]. For identical particles the origi-
nal three integral Fadeev equations reduce to one because
of symmetry. The analogous equation and scattering ma-
trix in the case of nuclear matter has been introduced by
Bethe [4]. The integral equation, the Bethe-Fadeev equa-
tion, reads schematically

T (3) = G + G X
Q3

e
T (3), or

〈k1k2k3|T (3)|k′
1k

′
2k

′
3〉 = 〈k1k2|G|k′

1k
′
2〉δK(k3 − k′

3)

+ 〈k1k2k3|G12 X
Q3

e
T (3)|k′

1k
′
2k

′
3〉 . (2)

The kernel contains the two-body scattering matrix G in
place of the bare NN interaction, in line with the BBG
scheme. The factor Q3/e is the analogue of the similar
factor appearing in the integral equation for the two-body
scattering matrix G, see eq. (1). Therefore, the projection
operator Q3 imposes that all the three-particle states lie
above the Fermi energy, and the denominator e is the ap-
propriate energy denominator, namely the energy of the
three-particle intermediate state minus the entry energy
ω, in close analogy with eq. (1). The real novelty with
respect to the two-body case is the operator X. This op-
erator interchanges particle 3 with particle 1 and with
particle 2, X = P123 + P132, where P indicates the oper-
ation of cyclic permutation of its indices. The reason for
the appearance of the operator X is that no two succes-
sive G-matrices can be present in the same pair of par-
ticle lines, since the G-matrix already sums up all the
two-body ladder processes. Higher-order correlations can
be introduced with the help of higher many-body scat-
tering matrix, but we will see that this is not necessary.
The results at the BHF level of approximation is reported
in fig. 1 in the case of symmetric nuclear matter (solid
lines). The two EOS correspond to two different choices
of the auxiliary potential, the standard and continuous
choices. The former choice set the potential for momenta
larger than the Fermi momentum, the latter choice adopts
the same Brueckner definition for all momenta. These two
choices can be considered as two extreme opposite cases.
As one can see, the saturation curves are different for the
two prescriptions. However, the apparent discrepancy of
4–5 MeV in the binding energies shown in fig. 1, is about
10% of the calculated potential energy per particle, which
is about −40 MeV around saturation. This is the degree
of convergence obtained at the Brueckner level. In view of
these results it appears mandatory to consider the three
hole-line diagrams. The value of their contribution can
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Fig. 1. Nuclear matter saturation curve for the Argonne v18

NN potential. The solid lines indicate the results at the Brueck-
ner (two hole-lines) level for the standard (BHF-G) and the
continuous choices (BHF-C), respectively. The results obtained
adding the three hole-line contribution are given by the open
squares (standard choice) and the open circles (continuous
choice).

indeed provide a check of convergence and possibly an ac-
curate EOS. The final EOS obtained by adding the three
hole-line contribution is reported in fig. 1, both for the
gap choice (squares) and the continuous choice (open cir-
cles). Two conclusions can be drawn from these results.
i) The two saturation curves in the standard and con-
tinuous choices, with the inclusion of the three hole-line
diagrams, tend now to collapse in a single EOS. This is
a strong indication that a high degree of convergence has
been reached. The saturation curves extend from low den-
sity to about five times saturation density, and it appears
unlikely that the agreement between the two choices is
a fortuitous coincidence. ii) The Brueckner EOS within
the continuous choice turns out to be already close to the
full EOS, i.e. in this case the three hole-line contribution is
quite small. In first approximation one can adopt the BHF
results with the continuous choice as the nuclear matter
EOS. Indeed, this is a further indication of convergence.
The phenomenological saturation point for symmetric nu-
clear matter is, however, not reproduced, which confirms
the finding in ref. [5]. Usually this drawback is corrected
by introducing three-body forces.

3 Spectral function

In the previous section we saw that a suitable and nat-
ural choice of the single-particle potential is able to in-
corporate a relevant amount of the NN correlations, and
consequently two-body correlations dominate the binding
energy of nuclear matter. It is not at all obvious that
this is still valid for other properties of nuclear matter.
In pioneering works by the Bochum group [6] within the
so-called eS method, which is quite similar to the BBG
method, it was found that the momentum distribution in
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finite nuclei is also dominated by two-body correlations.
Another quantity which is expected to be sensitive to nu-
cleon correlations is the single-particle strength function
or spectral function. In particular at high momentum and
energy transfer the spectral function should be mainly de-
termined by correlations, since for a non-interacting Fermi
gas it vanishes in that region. In principle the strength
function could be extracted from electron-nucleus scat-
tering data. However, in general only inclusive or semi-
inclusive data are available in the region of interest. In this
case it is difficult to de-convolute the effects of the final-
state interactions and the genuine spectral function can-
not be directly extracted from the electron-nucleus cross-
sections. Only recently extensive exclusive data [7] are be-
coming available. The effects of the rescattering on the
struck nucleon are still present and must be taken into
account before an accurate spectral function can be ex-
tracted. Anyhow the results are promising and open quite
new possibilities.

In nuclear matter the spectral function corresponding
to the nucleon self-energy M(k,E) = V (k,E)+ iW (k,E),
is given by the well-known result [8]

P (k,E) = − 1
π
ImG(k,E) =

1
π

W (k,E)
(−E − k2

2m − V (k,E))2 + W (k,E)2
, (3)

where G(k,E) is the single-particle Green’s function:

G(k,E) =
1

−E − k2

2m − V (k,E) − iW (k,E)
. (4)

It has to be noticed that the real, V (k,E), and imagi-
nary parts W (k,E) of the self-energy are highly off-shell
in the considered energy and momentum ranges. We are
interested in the region where E is much greater than the
Fermi energy EF. For high k and E, one finds

E +
k2

2m
� |V (k,E)|, |W (k,E)| , (5)

as can be seen from the results shown in ref. [9], and the
spectral function can thus be approximated with

P (k,E) ≈ 1
π

W (k,E)(
E + k2

2m

)2 . (6)

In the BBG expansion, the whole set of two-hole line
contributions to the imaginary part of the nucleon self-
energy, in the considered energy range, is summed up by
the diagram containing two G-matrices and one-particle–
two-hole lines in the intermediate states [9]. The diagram
takes into account the presence in the ground state of
two-particle two-hole correlations. We will first restrict the
analysis to this diagram. We get therefore for W (k,E)

W (k,E) = 1
2

∑
hh′p

Im
|〈kp|G (e(h) + e(h′)) |hh′〉a|2
E − e(p) + e(h) + e(h′)− iη

=

π
2

∑
hh′p

|〈kp|G|hh′〉a|2 δ(−E + e(p) − e(h) − e(h′)) , (7)

where e(p) denotes the self-consistent single-particle en-
ergy, the label a means antisymmetrization, and the sum
is restricted to states h and h′ with a momentum smaller
than kF and p with momentum larger than kF. Substitut-
ing this expression in eq. (6) we get

P (k,E) = 1
2

∑
hh′p

|〈kp|G (e(h) + e(h′)) |hh′〉a|2(
E + k2

2m

)2

× δ (E − e(p) + e(h) + e(h′)) . (8)

In ref. [10] it has been shown that in the regime of high
momentum and energy transfer the strength function of
eq. (8) can be cast in a “convolution” form

P (k,E) =
π2ρ2

16

∫
d3P

(2π)3
nrel

(∣∣k − 1
2P

∣∣)nFG
cm (P )

× δ
(
E − E

(2)
thr − E∗ − e(p)

)
. (9)

In eq. (9) the quantity E∗ is an average excitation energy
of the residual system, assumed to be much smaller than
the total energy E, calculated with respect to the minimal
threshold energy E

(2)
thr. The function nFG

cm is the center-of-
mass momentum distribution of two particles in a free
Fermi gas, and nrel is the relative momentum distribution
of two nucleons in the correlated ground state. The latter,
in the considered kinematical region, is proportional to
the square of the “defect function” |ξ(|k − 1

2P|)|2, which
is related to the G-matrix according to

|ξ〉 =
Q

ω − H0
G|φ〉 , (10)

where |φ〉 is the free two-particle state and H0 is the one-
body part of the nuclear Hamiltonian (including the aux-
iliary potential). The defect function is a measure of the
deviation of the two-body wave function from the free one
and therefore it embodies the two-body correlations. The
strength function is then directly related to the defect
function and to the corresponding correlations.

The physical meaning of eq. (9) is quite transparent.
The struck nucleon has a correlated partner with opposite
momentum and the correlated pair is moving almost freely
inside the nuclear medium. In the work of ref. [10] a con-
volution formula was indeed used to analyze the spectral
function and it was proven to be able of reproducing the
results of advanced many-body calculations. In ref. [11] it
was shown that the BBG calculations can be accurately
approximated by eq. (9), at least for momenta larger than
3 fm−1. The result of eq. (9) not only justifies the convo-
lution formula, but also gives the correct normalization.

An overall view of the strength function, calculated
with the complete expression of eq. (3), can be seen in
fig. 2. We performed [12] calculations of the nuclear matter
spectral function with three different two-body potentials,
the Urbana v14 [13], the Argonne v14 [14] and the Argonne
v18 [15]. Three-body forces were added, according to the
Urbana IX model [16], and adjusted to reproduce the cor-
rect saturation point. We checked that the effect of the
three-body force on the spectral function is negligible.
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Fig. 2. Three-dimensional view of the nuclear matter strength
function P (k, E) (in MeV−1) as a function of momentum k
(fm−1) and energy E (MeV). The plot is cut at 10−4 to em-
phasize the energy tail where correlations dominate. The v14

NN potential was used. For more details, see the text.

The scale of the plot is adjusted to emphasize the tail
at large energy transfer, where NN correlations dominate.
The quasi-particle peak, near the Fermi momentum, is
therefore out of the plot (in nuclear matter the strength
function diverges at the Fermi surface). One can recog-
nize at large momentum the quasi-elastic peak as a func-
tion of energy, where the strength is concentrated and this
is a direct consequence of the two-body character of the
correlations. For a more quantitative analysis it is more
convenient to perform equal momentum cuts. In fig. 3 is
shown the spectral function calculated at the the momen-
tum k = 3.5 fm−1. The three lines indicate our BBG calcu-
lations with different potentials as described in the figure,
while the full circles label the variational results of ref. [17],
where the Urbana v14 was used. For this momentum
the dependence on the nucleon-nucleon potential appears
quite weak, only in some cases a discrepancy is present,
which however does not exceed 20%. Larger deviations in
the high-energy region occur between the BBG results and
those of ref. [18]. We can conclude that these discrepan-
cies in the high-energy region are due to the many-body
treatment and not to the interaction employed.

Similar results are obtained for other values of the mo-
mentum k. However, as the k value increases, the discrep-
ancy in the energy tail tends to decrease [12]. It has to be
stressed that the overall trend of the spectral function is
very similar in the two many-body theories, namely the
variational and the BBG schemes, and the absolute values
at the maximum are in excellent agreement, without any
adjustment of the normalization.

In fig. 4 we compare our results (for the Urbana v14

potential) to the fully self-consistent calculation of Lehr
et al. [18], where the spectral function is calculated within
an approximation developed in transport theory. In this
case the comparison can be more transparent. The main
difference is the inclusion in ref. [18] of the single-particle
strength functions in the phase space integral of eq. (7),
which implies a self-consistent calculation. Furthermore,
in that work the square of the in-medium scattering ma-

Fig. 3. BBG calculations of the nuclear matter strength func-
tion S(k, ω) as a function of the energy ω for a fixed value of the
momentum k. The solid line is the result with the Argonne v18

potential, the long-dashed line is obtained with Argonne v14

and the dot-dashed line with the Urbana v14. The black dots
are the variational results of Benhar et al. [17]. The momentum
is fixed at k = 3.5 fm−1.

Fig. 4. BBG calculations of the nuclear matter strength func-
tion S(k, ω) as a function of the energy ω for a fixed value
of the momentum k. Comparison is made with those of Lehr
et al., ref. [18]. The dotted curves are obtained in that work
after the first iteration step, the solid curves are their fully self-
consistent calculation; the dashed curves show the variational
results of Benhar et al., ref. [17]. Our BBG results calculated
with the Urbana potential are shown here as asterisks. The
momentum is fixed at k = 2.26 fm−1.

trix is approximated by a constant average value, which
simplifies the calculation considerably. The average scat-
tering matrix is then adjusted in order to reproduce at
best the results of ref. [11]. Therefore, the first-order cal-
culations of ref. [18], indicated by the dotted lines in the
figures, are exactly equivalent to our calculations if the
G-matrix in eq. (7) is replaced by a constant average
value independent of momenta, directly related to the in-
medium nucleon-nucleon cross-section [18]. The discrep-
ancy with the BBG calculations is, in this case, only due
to this approximation, i.e. to the neglect of the G-matrix
momentum dependence. This shows the relevance of the
momentum-dependent correlations for the determination
of the single-particle spectral function. The fact that the
introduction of self-consistency moves the high-energy tail
towards the BBG behaviour appears misleading, since in
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the BBG calculations no self-consistency has been used.
This observation seems equally well applicable to the com-
parison with the variational calculations [17], where also
no self-consistency procedure is included in the many-
body scheme.

Of course these conclusions do not imply that the self-
consistent procedure is not relevant, but only that it must
be carried out with the full momentum dependence of the
G-matrix. Similar results are obtained for other values of
the momentum k, and again the discrepancy tends to de-
crease as the momentum increases.

4 Conclusions

The calculation of the Nuclear Equation of State in the
Bethe-Brueckner-Goldstone expansion indicates that nu-
clear matter is dominated by two-body correlations up
to densities a few times larger than the saturation one.
Within the same scheme, the single-particle spectral func-
tion was calculated at the two hole-line level of approxi-
mation and compared with the results of other many-body
theories. In particular, the BBG spectral function appears
in fair agreement with the variational method of ref. [17],
where higher-order correlations are also included. Some
discrepancies in the high-energy tail appear, which how-
ever tend to disappear at increasing momentum. These
findings, which are independent of the particular NN in-
teraction employed, seem to indicate that also the spec-
tral function is dominated by two-body correlations. The
result is consistent with previous calculations of the mo-
mentum distribution in finite nuclei in ref. [6].

The comparison of the spectral function with the inclu-
sive data on inelastic electron scattering cannot be direct,
since effects of the final-state interactions can be large and
dominate in the energy region well below the quasi-elastic
peak, where the effect of correlations should be more pro-
nounced. Unfortunately, the inclusion of the final-state in-
teractions requires the calculation of the particle spectral
function, and therefore the knowledge of the off-shell in-
medium inelastic cross-section. This is a difficult task and
up to now an unsolved problem.

Recent exclusive data [7] are more promising. On the
one hand, it is possible to separate the inelastic part (e.g.
the Delta excitation contribution), on the other hand, the
comparison is more direct, even if the rescattering in the

final states must be taken into account before extracting
the nuclear spectral function.

In conclusion, within the BBG scheme a consistent pic-
ture of nuclear matter bulk properties and single-particle
structure emerges, in which two-body correlations dom-
inate. The extension of these results to finite nuclei will
allow a closer comparison with the recent data on exclu-
sive inelastic electron scattering data.
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